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*notes: (markings annotation) 
Green highlight: answers to non-code content 
Yellow highlight: files data such as .py or .csv in the folder, highlighted for convenience in 
locating and verifying 
Turquoise highlight: code function 
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Overview 

 
The A-share market in China, governed by the Shanghai Stock Exchange (SSE) and Shenzhen 

Stock Exchange (SZSE), implements a daily price limit system to control stock price 

fluctuations. The system aims to mitigate extreme volatility and market speculation. According to 

the market regulations from SSE, the stock prices are allowed to fluctuate by ±10% for most 

stocks (non-ST stocks) and ±5% for special treatment (ST) stocks, relative to the previous 

trading day’s closing price. These limits aim to promote market stability and protect investors. 

The objective of this report is to analyze the impact of the A-share market price limit 

mechanisms on stock returns and volatility, focusing on the behavior of limit-up and limit-down 

stocks between 2010 and 2020. The project also includes an analysis of the composition and 

performance of three major stock indices—SSE 50, CSI 300, and CSI 500—to evaluate industry 

distribution and constituent stock weights. Additionally, adjustment factors for a sample stock, 

Vanke A (00002), are calculated to account for stock splits and dividends. 

Problem 1: Limit-Up and Limit-Down Stocks Analysis 

 
The A-share market applies a daily price limit system to restrict stock price fluctuations to stock 

prices based on the previous day’s closing price. Based on the SSE regulations, the price limit is 

±10% for non-ST stocks and ±5% for ST stocks. Stocks exceeding this limit are considered to hit 

a “limit-up” or a “limit-down) 

The data for the daily stock price for all the A-share stocks from January 1, 2010, to October 31, 

2020, was obtained from the CSMAR database (data.csmar.com). The daily stock price data is 
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downloaded per 5 years annually. Stock code (stock_id), date, closing price (close), and trading 

status (trdsta) are obtained in .csv file format. 

1. Stock Price Limit Calculation 

 

The formula for Limit-Up and Limit-Down Price: 

 

𝐿𝑖𝑚𝑖𝑡 − 𝑈𝑝 𝑃𝑟𝑖𝑐𝑒 = 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑐𝑙𝑜𝑠𝑖𝑛𝑔 𝑝𝑟𝑖𝑐𝑒 × (1 + 𝑙𝑖𝑚𝑖𝑡 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒) 

 
𝐿𝑖𝑚𝑖𝑡 − 𝐷𝑜𝑤𝑛 𝑃𝑟𝑖𝑐𝑒 = 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑐𝑙𝑜𝑠𝑖𝑛𝑔 𝑝𝑟𝑖𝑐𝑒 × (1 − 𝑙𝑖𝑚𝑖𝑡 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒) 

 
 

This Python script processes the stock data, calculates the daily price limits, and the next-day 

returns, and prints the results in a new .csv file. To read the CSV file, read_csv function is used 

from the pandas library to read the CSV file named combined_sorted.csv, importing its content 

into the DataFrame df. Then the data is sorted, first the trading date ‘Trddt’ is converted into date 

format and the data is sorted by its stock code ‘Stkcd’ and trading data ‘Trddt’ to ensure the 

correct order. 

To calculate the daily price limits and next-day returns. First, initialize a variable ‘results’ to store 

calculation results. The data is grouped by its stock code ‘Stkcd’. For each stock group, it is 

being processed row by row according to the trading date. For a new stock listing, if the data row 

is the first trading day for the stock or ‘Precloseprc’ is empty (possibly indicating a new stock), 

set the upper limit to 1.44 times the closing price of the day, and the lower limit to 0.64 times. On 

normal trading days situation, obtain the previous day’s closing price ‘Precloseprc’. If the trading 

status ‘Trdsta’ = 1, indicating a normal trading day, set the upper limit to 1.10 times the previous 

day’s closing price and the lower limit to 0.90 times. Otherwise, narrow the limits to 1.05 times 



  

4 

 

 

𝐿𝑖𝑚𝑖𝑡−𝑈𝑝 𝑃𝑟𝑖𝑐𝑒 

for the upper limit and 0.95 times for the lower limits. And, if the market type ‘Markettype’ = 16 

or 32 (specific market conditions), redefine the limits as 1.20 times for the upper limit and 0.80 

times for the lower limits. 

To calculate the next-day returns, if it is not the last row, calculate and record the next-day return 

for the next day’s closing price; otherwise, consider it a null value. Then store all calculations in 

the variable ‘results’ (list in dictionary format). Each dictionary includes the stock code, trading 

date, trading status, price limits, trigger flags, next-day return, and the day's closing price. Then 

convert the ‘results’ variable into a pandas DataFrame and export its content to a new CSV file 

named calculated_stock_limits_returns.csv. 

2. Limit-Up Stocks 

 

 

For each limit-up stock, the average return is calculated if the stock is sold at the closing price on 

the next trading day. 

Formula for Next-Day Return: 

 

𝑁𝑒𝑥𝑡 𝐷𝑎𝑦 𝑅𝑒𝑡𝑢𝑟𝑛 =  𝑁𝑒𝑥𝑡 𝐷𝑎𝑦 𝐶𝑙𝑜𝑠𝑒 𝑃𝑟𝑖𝑐𝑒 − 𝐿𝑖𝑚𝑖𝑡−𝑈𝑝 𝑃𝑟𝑖𝑐𝑒  

 
This code filters the data for upper limit hits from the calculated stock data and further analyzes 

this data. First, read the CSV file using the read_csv function from the pandas library to read the 

CSV file named calculated_stock_limits_returns.csv, importing its content into the DataFrame 

data. Then, filter the upper-limit data. Filter the data where ‘Limit_Up_Hit’ = 1, indicating the 

day's closing price reached the upper limit, and store it in the DataFrame ‘limit_up_data’. Then, 

calculate the average next-day returns. Group the upper limit data based on whether the trading 
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status ‘Trdsta’ = 1 and calculate the average of the next-day returns ‘Next_Day_Return’ for each 

group, storing the results in ‘average_next_day_return’. Output the calculated results to a CSV 

file named average_next_day_return_up.csv. 

Segmenting data by trading status. Split the original data based on whether the trading status 

‘Trdsta’ is 1, storing the results in DataFrames ‘data_trdsta_1’ and ‘data_trdsta_not_1’. Output 

these two DataFrames to CSV files named trdsta_1_up.csv and trdsta_not_1_up.csv. Print a 

message informing the user that the files have been saved and print the average next-day return 

results. 

Non-ST Stocks and ST Stocks. For most non-ST stocks, upper limits usually reflect positive 

market sentiment, suggesting the possibility of further gains or at least stability the following 

day. Hence, the average returns may be positive. While, ST stocks (those under special treatment, 

typically due to poor financial health or other issues) may not perform as well the day after an 

upper limit is hit. The market may be more cautious due to concerns about their fundamentals, 

resulting in rapid loss of gains, leading to potentially lower or even negative average returns. 

3. Analysis of Limit-Down Stocks 

 

3.1 Calculation of the Next-Day Returns for Limit-Down Stocks 

 

The average next-day return for limit-down stocks is calculated using the following formula: 

 

 𝑁𝑒𝑥𝑡 𝐷𝑎𝑦 𝐶𝑙𝑜𝑠𝑒 𝑃𝑟𝑖𝑐𝑒 − 𝐿𝑖𝑚𝑖𝑡−𝐷𝑜𝑤𝑛 𝑃𝑟𝑖𝑐𝑒  

𝐿𝑖𝑚𝑖𝑡−𝐷𝑜𝑤𝑛 𝑃𝑟𝑖𝑐𝑒 

 

 
The output files for this code are as follows: 

𝑁𝑒𝑥𝑡 𝐷𝑎𝑦 𝑅𝑒𝑡𝑢𝑟𝑛 = 
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average_next_day_return_down.csv: Contains the average next-day returns of lower limit data, 

grouped by trading status. 

trdsta_1_down.csv: Contains lower limit data where the trading status is 1. 

 

trdsta_not_1_down.csv: Contains lower limit data where the trading status is not 1. 

 

3.2 Comparison of Limit-Up, Limit-Down, and Non-Limit Stocks 

 

The Differences Between ST and Non-ST Stock Limit Phenomena. ST stocks, due to poor 

performance or other factors, exhibit larger volatility with smaller limit movements (5%), 

indicating higher risk. Non-ST stocks have larger limit movements (10%) and tend to be more 

stable, reflecting lower risk and higher market confidence. 

4. Volatility and Return Analysis for Limit-Up, Limit-Down, and Non-Limit Stocks 

 

Python code:  

 

This code analyzes the stock data from the calculated_stock_limits_returns.csv file, calculating 

the average returns over the next 30 days under specific conditions, and saving the results to a file 

named . 

Use pandas to read calculated_stock_limits_returns.csv and load the data into the variable ‘data’. 

 

Define the function in the variable ‘compute_average_next_day_returns’, which calculates the 

average daily return of a stock over the next 30 trading days. It loops through the given data set, 

calculating the average ‘Next_Day_Return’ for the next 30 days. 

Calculating Average Returns for Limit Hits. Filter the data where ‘Limit_Up_Hit’ = 1, indicating 

an upper limit hit on a particular day. Group this data by stock code ‘Stkcd’ and apply the 

‘compute_average_next_day_returns’ function to compute the average returns for each stock. 
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Store the results in the variable ‘average_up’. 

 

Calculating Average Returns for Lower Limit Hits. Filter the data where ‘Limit_Down_Hit’ 

equals 1, indicating a lower limit hit. Similarly, group by stock code and calculate the average 

returns, storing results in ‘average_down’. 

Calculating Average Returns for Non-limit Stocks. Filter the data for stocks that have not hit 

upper or lower limits, meaning ‘Limit_Up_Hit’ = 0 and ‘Limit_Down_Hit’ = 0. Group by stock 

code and calculate the average returns for the next 30 days, storing the results in 

‘average_no_limit’. 

Results Output. To organize and save the final result, consolidate the three groups (upper limit, 

lower limit, no limit) into a DataFrame containing three columns: ‘Average_Up_Return’, 

‘Average_Down_Return’, and ‘Average_No_Limit_Return’. Output this result to a file 

namedMonthly volatility and returns.csv for further analysis or reporting. Print a message 

confirming that the results 

have been successfully saved. 

 

Conclusion. Stocks hitting upper limits often show high volatility and positive returns within the 

following month. 

Stocks hitting lower limits usually exhibit high volatility and may yield negative returns in the 

subsequent month. 

Non-limit stocks show lower volatility and more stable returns over the same time period. 
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Problem 2: Market Indices Analysis (SSE 50, CSI 300, CSI 500) 

 
1. Data Sources 

 

The main data such as the constituent weights and market cap of each constituent is collected 

directly from the iFind platform. The distribution of the indices sectors data is acquired from the 

legulegu.com website. 

Distribution of SSE 50 Index: 

 

https://legulegu.com/stockdata/index-industry?indexCode=000016.SH 

Distribution of CSI 300 Index: 

https://legulegu.com/stockdata/index-industry?indexCode=000300.SH 

Distribution of CSI smallcap 500 Index: 

https://legulegu.com/stockdata/index-industry?indexCode=000905.SH 

2. Industry Distribution Analysis of Stock Indices 

 

We collected the list of constituent stocks for each index (SSE 50, CSI 300, CSI 500) along with 

their market values and industry classifications. Based on the information provided by the data 

source, we compiled the industry distribution of listed companies and visualized it using Python's 

matplotlib. We then generated three separate histograms with the x-axis representing company 

industries and the y-axis representing the number of companies in each industry. Below are the 

histograms generated for the three indices: 

https://legulegu.com/stockdata/index-industry?indexCode=000016.SH
https://legulegu.com/stockdata/index-industry?indexCode=000300.SH
https://legulegu.com/stockdata/index-industry?indexCode=000905.SH
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Fig. 1 SSE 50 Constituent Industry Distribution 

 

 

 

Fig. 2 CSI 300 Constituent Industry Distribution 
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Fig. 3 CSI 500 Constituent Industry Distribution 

 

 

3. Weight Calculation of Constituent Stocks & Sum of Weights of Top 10 Weighted 

Constituent Stocks 

This code aims to calculate the top ten constituent stocks within the stock index and their 

weights, outputting the results to a CSV file. First, use the pandas library to read a CSV file 

named stock_index.csv (which can be replaced), storing the data in the DataFrame df. It assumes 

this file contains a column named '市值' (market value) for each constituent stock. 

Calculating Total Market Value. Use the sum() method to calculate the total market value of all 

 

constituent stocks, stored in the variable ‘total_market_value’. 

 

Calculating Weights for Each Constituent Stock. Calculate the weight of each constituent stock 

in the index by dividing each stock's market value by the total market value, storing the result in 

a new column '权重' (weight) within the DataFrame. 
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Top Ten Stocks. Use the nlargest() method to sort the DataFrame in descending order based on 

the '权重' column and select the top ten constituent stocks, storing the result in ‘top_10’. Then, 

use the sum() method to calculate the total weight of these top ten stocks and store the result in 

‘top_10_weight_sum’. Finally, output the DataFrame ‘top_10’ containing the top ten stocks and 

their weights to a CSV file, where the file name should replace the wildcard with the 

corresponding index name (e.g., szz50_top_10_weights.csv, hs300_top_10_weights.csv, 

zz500_top_10_weights.csv, depending on the data file used). Output the total weight of the top 

ten constituent stocks to the console for quick reference of the calculation results. Overall, this 

code block accomplishes reading stock data, calculating total market value, processing weights, 

sorting, and finally outputting a summary of the most valuable ten stocks. The file name suffix 

will be determined by the input stock index file. 

4. Comparison of SSE 50, CSI 300, and CSI 500 

 

SSE 50 Index 

 

Industry Distribution. Mainly composed of traditional industries such as finance (e.g., 

Industrial and Commercial Bank of China, China Construction Bank), energy (e.g., China 

Petroleum, Sinopec), and materials (e.g., Baosteel). Most constituents are large state-owned 

enterprises, leading to lower industry diversity and higher market dependence on certain sectors. 

Market Value Weighting. Dominated by large-cap companies, the weight is highly 

concentrated, with the volatility of individual stocks (like bank stocks) potentially having a 

significant impact on the index, resulting in overall lower volatility suitable for risk-averse 

investors. 
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CSI 300 Index 

 

 

 

 

changes. 

 

Market Value Weighting. More diversified overall weighting, avoiding excessive reliance on 

individual stocks, and effectively reflecting market trends, suitable for investors seeking balanced 

returns with moderate risk. 

CSI 500 Index 

 

consumer goods (e.g., small appliances, food and beverage), technology (e.g., emerging internet 

 

 

focusing on growth companies. 

 

 

volatility is higher. As constituents are mostly small enterprises, they are more susceptible to 

market sentiment and policy changes. 

Industry Distribution. Rich industry diversity, covering finance, consumer goods (e.g., 

Kweichow Moutai, Haitian Flavoring), technology (e.g., Tencent, Alibaba), and pharmaceuticals 

(e.g., Heng Rui Medicine), reflecting the overall market comprehensively. Compared to the SSE 

50, the CSI 300 exhibits a more balanced industry distribution and better reflects overall market 

Industry Distribution. Mainly composed of small to mid-cap enterprises, including sectors like 

companies), as well as environmental protection and renewable energy, showing rich industry 

diversity and capturing market changes and emerging opportunities, suitable for investors 

Market Value Weighting. With a larger number of small and mid-cap companies, the weight 

distribution is relatively dispersed, reducing dependence on individual companies, but overall 



  

13 

 

 

Problem 3: Adjustment Factor Calculation for Wanke A Stocks (00002) 

 
1. Data Collection 

 

The data source for all the historical events of Wanke A is downloaded from the iFind platform. 

 

2. Forward and Backward Adjust Factors 

Forward Adjustment Factor 

This Python script aims to calculate the adjustment factor for stocks, considering dividends, 

bonus shares, and stock splits, saving the results to a CSV file. Import the pandas library for data 

processing. Load data from the file dividends_splits.csv, which is assumed to contain columns 

such as ‘Previous_Closing’, ‘Dividend’, ‘Bonus_Share’, and ‘Gift_Share’. Define a function 

named ‘calculate_adjustment_factor’, to calculate the adjustment factor, taking a data row as 

input. Retrieve values for ‘previous_closing’, ‘dividend’, ‘bonus_share’, and ‘gift_share’ from 

the input row. Use ‘dividend_ratio’ to calculate the adjustment ratio after dividends, with 

exception handling for division by zero, defaulting to 1 if the denominator is zero. Calculate 

‘bonus_share_ratio’ and ‘gift_share_ratio’. 

Combine Conditions for Different Dividend and Share Scenarios. Use conditional statements to 

combine scenarios with dividends, bonus shares, and gift shares to calculate the final adjustment 

factor, considering combinations like: 

● All three: dividends, gift shares, and bonus shares. 

 

● Only dividends and gift shares. 

 

● Only dividends and bonus shares. 
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● Only gift shares and bonus shares. 

 

● Only dividends, only bonus shares, or only gift shares. 

 

If none of these events occur, the adjustment factor is set to 1. 

 

Apply Function and Save Results. Apply the ‘calculate_adjustment_factor function’ to each row 

using the apply function, storing the results in a new column ‘Forward_Adjustment_Factor’. 

Extract the necessary columns: ‘Ex-Dividend Date’ and ‘Forward Adjustment Factor’. Save the 

results to a file named adjusted_factors.csv, using UTF-8-sig encoding to ensure compatibility 

with software like Excel. Overall, this script adjusts stock data for dividends and capital changes, 

outputting to adjusted_factors.csv for subsequent analysis. 

Backward Adjustment Factor 

 

This Python script calculates the backward adjustment factor for stock prices and uses these 

factors to adjust stock closing prices. Use the pandas library to read and process CSV data files. 

Load data from a CSV file named dividends_splits.csv, creating a DataFrame df that should 

contain columns like ‘Previous_Closing’, ‘Dividend’, ‘Bonus_Share’, and ‘Gift_Share’. 

Initialize Backward Adjustment Factor. Add a column for the backward adjustment factor, 

initially set to 1.0 for subsequent calculations. 

Calculate the Backward Adjustment Factor. Use a loop to compute the backward adjustment 

factor for each day with the following logic: 

● ‘B’ is the total change in stock capital (i.e., Bonus_Share + Gift_Share). 

 

● ‘D’ is the dividend for the current row. 
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● ‘P_prev’ is the previous row's closing price. 

 

● The backward adjustment factor for the current row equals the previous row's backward 

adjustment factor multiplied by (1 + B + D / P_prev). 

Apply Backward Adjusted Price Calculation. Calculate each day's backward adjusted price by 

multiplying the previous day's closing price with the calculated backward adjustment factor. Save 

the resulting data, including Ex-Dividend Date, Backward Adjustment Factor, and Backward 

Adjusted Price, to a file named post_adjusted_factors.csv. The file will be encoded in UTF-8 

without including row indices. The goal of this script is to adjust historical stock prices for 

dividends, bonus shares, and stock splits, outputting the adjusted prices and factors to 

post_adjusted_factors.csv. 
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