A Quantitative Empirical Study of the
Impact of China's A-share Price Limit
Mechanism on Market Volatility

The Chinese University of Hong Kong, Shenzhen
Li Minglin
FIN 3080: Investment Portfolio Analysis Management (L01)
Prof. Chen Jingxuan

October 17, 2024



Table of Contents

1. Stock Price Limit Calculation in the A-share Market and Filtering Suspended Stocks
2. Analysis of Limit-Up Stocks
3. Analysis of Limit-Down Stocks
3.1 Calculation of the Next-Day Returns for Limit-Up Stocks
3.2 Comparison of Limit-Up, Limit-Down, and Non-Limit Stocks
4. Volatility and Return Analysis for Limit-Up, Limit-Down, and Non-Limit Stocks
3.1 Data Sources
3.2 Industry Distribution Analysis of Stock Indices
3.3 Weight Calculation of Constituent Stocks
3.4 Comparison of SSE 50, CS1 300, and CSI1 500
4.1 Data Collection
4.2 Forward and Backward Adjust Factors

AP, W W W W W WWWWwDN

*notes: (markings annotation)

Green highlight: answers to non-code content

Yellow highlight: files data such as .py or .csv in the folder, highlighted for convenience in
locating and verifying

Turquoise highlight: code function



Overview

The A-share market in China, governed by the Shanghai Stock Exchange (SSE) and Shenzhen
Stock Exchange (SZSE), implements a daily price limit system to control stock price
fluctuations. The system aims to mitigate extreme volatility and market speculation. According to
the market regulations from SSE, the stock prices are allowed to fluctuate by £10% for most
stocks (non-ST stocks) and +5% for special treatment (ST) stocks, relative to the previous
trading day’s closing price. These limits aim to promote market stability and protect investors.

The objective of this report is to analyze the impact of the A-share market price limit
mechanisms on stock returns and volatility, focusing on the behavior of limit-up and limit-down
stocks between 2010 and 2020. The project also includes an analysis of the composition and
performance of three major stock indices—SSE 50, CSI 300, and CSI 500—to evaluate industry
distribution and constituent stock weights. Additionally, adjustment factors for a sample stock,

Vanke A (00002), are calculated to account for stock splits and dividends.

Problem 1: Limit-Up and Limit-Down Stocks Analysis

The A-share market applies a daily price limit system to restrict stock price fluctuations to stock
prices based on the previous day’s closing price. Based on the SSE regulations, the price limit is
+10% for non-ST stocks and +5% for ST stocks. Stocks exceeding this limit are considered to hit
a “limit-up” or a “limit-down)

The data for the daily stock price for all the A-share stocks from January 1, 2010, to October 31,

2020, was obtained from the CSMAR database (data.csmar.com). The daily stock price data is



downloaded per 5 years annually. Stock code (stock_id), date, closing price (close), and trading
status (trdsta) are obtained in .csv file format.
1. Stock Price Limit Calculation
The formula for Limit-Up and Limit-Down Price:
Limit — Up Price = previous closing price X (1 + limit percentage)

Limit — Down Price = previous closing price X (1 — limit percentage)

This Python script processes the stock data, calculates the daily price limits, and the next-day
returns, and prints the results in a new .csv file. To read the CSV file, read_csv function is used
from the pandas library to read the CSV file named combined_sorted.csv, importing its content
into the DataFrame df. Then the data is sorted, first the trading date ‘Trddt’ is converted into date
format and the data is sorted by its stock code ‘Stkcd’ and trading data ‘Trddt’ to ensure the
correct order.

To calculate the daily price limits and next-day returns. First, initialize a variable ‘results’ to store
calculation results. The data is grouped by its stock code ‘Stkcd’. For each stock group, it is
being processed row by row according to the trading date. For a new stock listing, if the data row
is the first trading day for the stock or ‘Precloseprc’ is empty (possibly indicating a new stock),
set the upper limit to 1.44 times the closing price of the day, and the lower limit to 0.64 times. On
normal trading days situation, obtain the previous day’s closing price ‘Precloseprc’. If the trading
status ‘Trdsta’ = 1, indicating a normal trading day, set the upper limit to 1.10 times the previous

day’s closing price and the lower limit to 0.90 times. Otherwise, narrow the limits to 1.05 times



for the upper limit and 0.95 times for the lower limits. And, if the market type ‘Markettype’ = 16
or 32 (specific market conditions), redefine the limits as 1.20 times for the upper limit and 0.80
times for the lower limits.

To calculate the next-day returns, if it is not the last row, calculate and record the next-day return
for the next day’s closing price; otherwise, consider it a null value. Then store all calculations in
the variable ‘results’ (list in dictionary format). Each dictionary includes the stock code, trading
date, trading status, price limits, trigger flags, next-day return, and the day's closing price. Then
convert the ‘results’ variable into a pandas DataFrame and export its content to a new CSV file
named calculated_stock limits_returns.csv.

2. Limit-Up Stocks

For each limit-up stock, the average return is calculated if the stock is sold at the closing price on
the next trading day.

Formula for Next-Day Return:

Next Day Close Price — Limit—Up Price
Limit—Up Price

Next Day Return =

This code filters the data for upper limit hits from the calculated stock data and further analyzes
this data. First, read the CSV file using the read_csv function from the pandas library to read the
CSV file named calculated stock limits_returns.csv, importing its content into the DataFrame
data. Then, filter the upper-limit data. Filter the data where ‘Limit Up Hit” = 1, indicating the
day's closing price reached the upper limit, and store it in the DataFrame ‘limit_up_data’. Then,

calculate the average next-day returns. Group the upper limit data based on whether the trading



status ‘Trdsta’ = 1 and calculate the average of the next-day returns ‘Next Day Return’ for each
group, storing the results in ‘average next day return’. Output the calculated results to a CSV
file named average next_day_return_up.csv.

Segmenting data by trading status. Split the original data based on whether the trading status
‘Trdsta’ is 1, storing the results in DataFrames ‘data trdsta 1’ and ‘data trdsta not 1’. Output
these two DataFrames to CSV files named trdsta_1 up.csv and trdsta_not_1 up.csv. Print a
message informing the user that the files have been saved and print the average next-day return
results.

Non-ST Stocks and ST Stocks. For most non-ST stocks, upper limits usually reflect positive
market sentiment, suggesting the possibility of further gains or at least stability the following
day. Hence, the average returns may be positive. While, ST stocks (those under special treatment,
typically due to poor financial health or other issues) may not perform as well the day after an
upper limit is hit. The market may be more cautious due to concerns about their fundamentals,
resulting in rapid loss of gains, leading to potentially lower or even negative average returns.

3. Analysis of Limit-Down Stocks

3.1 Calculation of the Next-Day Returns for Limit-Down Stocks

The average next-day return for limit-down stocks is calculated using the following formula:

Next Day Close Price — Limit—Down Price
Limit—Down Price

Next Day Return =

The output files for this code are as follows:



average_next_day_return_down.csv: Contains the average next-day returns of lower limit data,
grouped by trading status.

trdsta_1 down.csv: Contains lower limit data where the trading status is 1.

trdsta_not_1 down.csv: Contains lower limit data where the trading status is not 1.

3.2 Comparison of Limit-Up, Limit-Down, and Non-Limit Stocks

The Differences Between ST and Non-ST Stock Limit Phenomena. ST stocks, due to poor
performance or other factors, exhibit larger volatility with smaller limit movements (5%),
indicating higher risk. Non-ST stocks have larger limit movements (10%) and tend to be more
stable, reflecting lower risk and higher market confidence.

4. Volatility and Return Analysis for Limit-Up, Limit-Down, and Non-Limit Stocks

Python code:

This code analyzes the stock data from the calculated_stock limits_returns.csv file, calculating
the average returns over the next 30 days under specific conditions, and saving the results to a file
named .

Use pandas to read calculated stock limits_returns.csv and load the data into the variable ‘data’.
Define the function in the variable ‘compute average next day returns’, which calculates the
average daily return of a stock over the next 30 trading days. It loops through the given data set,
calculating the average ‘Next Day Return’ for the next 30 days.

Calculating Average Returns for Limit Hits. Filter the data where ‘Limit Up Hit’ = 1, indicating
an upper limit hit on a particular day. Group this data by stock code ‘Stkcd’ and apply the

‘compute_average next day returns’ function to compute the average returns for each stock.



Store the results in the variable ‘average up’.

Calculating Average Returns for Lower Limit Hits. Filter the data where ‘Limit Down_ Hit’
equals 1, indicating a lower limit hit. Similarly, group by stock code and calculate the average
returns, storing results in ‘average down’.

Calculating Average Returns for Non-limit Stocks. Filter the data for stocks that have not hit
upper or lower limits, meaning ‘Limit Up Hit’ = 0 and ‘Limit Down_Hit’ = 0. Group by stock
code and calculate the average returns for the next 30 days, storing the results in
‘average no_limit’.

Results Output. To organize and save the final result, consolidate the three groups (upper limit,
lower limit, no limit) into a DataFrame containing three columns: ‘Average Up Return’,
‘Average Down Return’, and ‘Average No Limit Return’. Output this result to a file
namedMonthly volatility and returns.csv for further analysis or reporting. Print a message

confirming that the results

have been successfully saved.

Conclusion. Stocks hitting upper limits often show high volatility and positive returns within the



Problem 2: Market Indices Analysis (SSE 50, CSI 300, CSI 500)

1. Data Sources

The main data such as the constituent weights and market cap of each constituent is collected
directly from the iFind platform. The distribution of the indices sectors data is acquired from the
legulegu.com website.

Distribution of SSE 50 Index:

https://lequlegu.com/stockdata/index-industry?indexCode=000016.SH

Distribution of CSI 300 Index:

https://lequlegu.com/stockdata/index-industry?indexCode=000300.SH

Distribution of CSI smallcap 500 Index:

https://lequlegu.com/stockdata/index-industry?indexCode=000905.SH

2. Industry Distribution Analysis of Stock Indices

We collected the list of constituent stocks for each index (SSE 50, CSI 300, CSI 500) along with
their market values and industry classifications. Based on the information provided by the data
source, we compiled the industry distribution of listed companies and visualized it using Python's
matplotlib. We then generated three separate histograms with the x-axis representing company
industries and the y-axis representing the number of companies in each industry. Below are the

histograms generated for the three indices:


https://legulegu.com/stockdata/index-industry?indexCode=000016.SH
https://legulegu.com/stockdata/index-industry?indexCode=000300.SH
https://legulegu.com/stockdata/index-industry?indexCode=000905.SH

-.-I;i'ﬂwm - o

LIESORL RIS

& g ,ﬁ’ '9;2’3‘ é@wﬁ éy‘:?ﬁ* & o ’:f‘} @”V g’# ﬁ yﬁ'@&ﬁ T @kt;&* *1??* &
Fig. 1 SSE 50 Constituent Industry Distribution

i A, Figure 1 - o
RS IRIR T 5 R

40 0

35

L R

Fig. 2 CSI 300 Constituent Industry Distribution




X, Figure 1 o
RESOORE S} LRI Tdk 5y 28

60 59

50 4

40 -

1301 28

20 4 18 o
14 14 4o
104 10 10 10 10 10 10 o

Fig. 3 CSI 500 Constituent Industry Distribution

3. Weight Calculation of Constituent Stocks & Sum of Weights of Top 10 Weighted

Constituent Stocks

This code aims to calculate the top ten constituent stocks within the stock index and their

weights, outputting the results to a CSV file. First, use the pandas library to read a CSV file

named stock_index.csv (which can be replaced), storing the data in the DataFrame df. It assumes

this file contains a column named 'Hi{H" (market value) for each constituent stock.

Calculating Total Market Value. Use the sum() method to calculate the total market value of all

constituent stocks, stored in the variable ‘total market value’.

Calculating Weights for Each Constituent Stock. Calculate the weight of each constituent stock

in the index by dividing each stock's market value by the total market value, storing the result in

a new column '#LE" (weight) within the DataFrame.

10



Top Ten Stocks. Use the nlargest() method to sort the DataFrame in descending order based on
the ALE' column and select the top ten constituent stocks, storing the result in ‘top 10’. Then,
use the sum() method to calculate the total weight of these top ten stocks and store the result in
‘top_10_weight_sum’. Finally, output the DataFrame ‘top 10’ containing the top ten stocks and
their weights to a CSV file, where the file name should replace the wildcard with the
corresponding index name (e.g., szz50 top_10 weights.csv, hs300 top_10 weights.csv,
zz500_top_10_ weights.csv, depending on the data file used). Output the total weight of the top
ten constituent stocks to the console for quick reference of the calculation results. Overall, this
code block accomplishes reading stock data, calculating total market value, processing weights,
sorting, and finally outputting a summary of the most valuable ten stocks. The file name suffix
will be determined by the input stock index file.

4. Comparison of SSE 50, CSI 300, and CSI 500

SSE 50 Index

Industry Distribution. Mainly composed of traditional industries such as finance (e.g.,
Industrial and Commercial Bank of China, China Construction Bank), energy (e.g., China
Petroleum, Sinopec), and materials (e.g., Baosteel). Most constituents are large state-owned
enterprises, leading to lower industry diversity and higher market dependence on certain sectors.
Market Value Weighting. Dominated by large-cap companies, the weight is highly
concentrated, with the volatility of individual stocks (like bank stocks) potentially having a
significant impact on the index, resulting in overall lower volatility suitable for risk-averse

investors.

11



CSI 300 Index

Industry Distribution. Rich industry diversity, covering finance, consumer goods (e.g.,
Kweichow Moutai, Haitian Flavoring), technology (e.g., Tencent, Alibaba), and pharmaceuticals
(e.g., Heng Rui Medicine), reflecting the overall market comprehensively. Compared to the SSE
50, the CSI1 300 exhibits a more balanced industry distribution and better reflects overall market
changes.

Market Value Weighting. More diversified overall weighting, avoiding excessive reliance on
individual stocks, and effectively reflecting market trends, suitable for investors seeking balanced
returns with moderate risk.

CSI 500 Index

Industry Distribution. Mainly composed of small to mid-cap enterprises, including sectors like
consumer goods (e.g., small appliances, food and beverage), technology (e.g., emerging internet
companies), as well as environmental protection and renewable energy, showing rich industry
diversity and capturing market changes and emerging opportunities, suitable for investors
focusing on growth companies.

Market Value Weighting. With a larger number of small and mid-cap companies, the weight
distribution is relatively dispersed, reducing dependence on individual companies, but overall
volatility is higher. As constituents are mostly small enterprises, they are more susceptible to

market sentiment and policy changes.

12



Problem 3: Adjustment Factor Calculation for Wanke A Stocks (00002)

1. Data Collection
The data source for all the historical events of Wanke A is downloaded from the iFind platform.
2. Forward and Backward Adjust Factors
Forward Adjustment Factor
This Python script aims to calculate the adjustment factor for stocks, considering dividends,
bonus shares, and stock splits, saving the results to a CSV file. Import the pandas library for data
processing. Load data from the file dividends_splits.csv, which is assumed to contain columns
such as ‘Previous Closing’, ‘Dividend’, ‘Bonus Share’, and ‘Gift Share’. Define a function
named ‘calculate adjustment factor’, to calculate the adjustment factor, taking a data row as
input. Retrieve values for ‘previous closing’, ‘dividend’, ‘bonus_share’, and ‘gift share’ from
the input row. Use ‘dividend ratio’ to calculate the adjustment ratio after dividends, with
exception handling for division by zero, defaulting to 1 if the denominator is zero. Calculate
‘bonus_share ratio’ and ‘gift share ratio’.
Combine Conditions for Different Dividend and Share Scenarios. Use conditional statements to
combine scenarios with dividends, bonus shares, and gift shares to calculate the final adjustment
factor, considering combinations like:

o All three: dividends, gift shares, and bonus shares.

o Only dividends and gift shares.

o Only dividends and bonus shares.

13



o Only gift shares and bonus shares.

o Only dividends, only bonus shares, or only gift shares.
If none of these events occur, the adjustment factor is set to 1.
Apply Function and Save Results. Apply the ‘calculate_adjustment factor function’ to each row
using the apply function, storing the results in a new column ‘Forward Adjustment Factor’.
Extract the necessary columns: ‘Ex-Dividend Date’ and ‘Forward Adjustment Factor’. Save the
results to a file named adjusted_factors.csv, using UTF-8-sig encoding to ensure compatibility
with software like Excel. Overall, this script adjusts stock data for dividends and capital changes,
outputting to adjusted_factors.csv for subsequent analysis.
Backward Adjustment Factor
This Python script calculates the backward adjustment factor for stock prices and uses these
factors to adjust stock closing prices. Use the pandas library to read and process CSV data files.
Load data from a CSV file named dividends_splits.csv, creating a DataFrame df that should
contain columns like ‘Previous Closing’, ‘Dividend’, ‘Bonus_Share’, and ‘Gift Share’.
Initialize Backward Adjustment Factor. Add a column for the backward adjustment factor,
initially set to 1.0 for subsequent calculations.
Calculate the Backward Adjustment Factor. Use a loop to compute the backward adjustment
factor for each day with the following logic:

¢ ‘B’ s the total change in stock capital (i.e., Bonus_Share + Gift_Share).

o ‘D’ is the dividend for the current row.

14



o ‘P _prev’ is the previous row's closing price.
o The backward adjustment factor for the current row equals the previous row's backward
adjustment factor multiplied by (1 + B + D/ P_prev).

Apply Backward Adjusted Price Calculation. Calculate each day's backward adjusted price by
multiplying the previous day's closing price with the calculated backward adjustment factor. Save
the resulting data, including Ex-Dividend Date, Backward Adjustment Factor, and Backward
Adjusted Price, to a file named post_adjusted_factors.csv. The file will be encoded in UTF-8
without including row indices. The goal of this script is to adjust historical stock prices for
dividends, bonus shares, and stock splits, outputting the adjusted prices and factors to

post_adjusted_factors.csv.

15



	Overview
	Problem 1: Limit-Up and Limit-Down Stocks Analysis
	1. Stock Price Limit Calculation
	2. Limit-Up Stocks
	3. Analysis of Limit-Down Stocks
	3.1 Calculation of the Next-Day Returns for Limit-Down Stocks
	3.2 Comparison of Limit-Up, Limit-Down, and Non-Limit Stocks
	4. Volatility and Return Analysis for Limit-Up, Limit-Down, and Non-Limit Stocks

	Problem 2: Market Indices Analysis (SSE 50, CSI 300, CSI 500)
	1. Data Sources
	2. Industry Distribution Analysis of Stock Indices
	3. Weight Calculation of Constituent Stocks & Sum of Weights of Top 10 Weighted Constituent Stocks
	4. Comparison of SSE 50, CSI 300, and CSI 500
	CSI 300 Index
	CSI 500 Index

	Problem 3: Adjustment Factor Calculation for Wanke A Stocks (00002)
	1. Data Collection
	2. Forward and Backward Adjust Factors Forward Adjustment Factor
	Backward Adjustment Factor


